Local Extremums of Real-Valued Functions

Critical Point

Let f be a real-valued function s.t f:URnR
x0 is a critical point of f if it is not differentiable at x0 or if Df(x0)=0

Local Max

Critical point is a local max if the Hessian is negative-definite:

  1. Hfv,v<0vRn{0}
  2. det((r)Hf)<0if r is odd positive otherwise

Local Min

Critical point is a local min if the Hessian is positive-definite:

  1. Hfv,v>0vRn{0}
  2. det((r)Hf)>0r

Saddle Point

A critical point is a saddle point the Hessian is neither a local max or local min