Limits and Continuity

Def: Limit of a Real-Valued Function

Let f:DRnR
For x0D¯, limxx0f(x)=L if:

ε>0,δ>0 such that if xD and 0<||xx0||<δ|f(x)L|<δ

Alternatively:
For x0D¯, limxx0f(x)=L if:

Bϵ(L),f((Bδ(x0)D)x0)Bϵ(L)

Def: Limit of a Vector-Valued Function

Say f:DRnRm such that:

f(x)=[g1(x)g2(x)gm(x)]

limxx0f(x) exists if and only if:

limxx0g1(x),limxx0g2(x),,limxx0gm(x)

exists, where gi,i{1,2,,m} are real-valued

Alternatively:
For x0D¯, limxx0f(x)=L if:

Bϵ(L),f((Bδ(x0)D)x0)Bϵ(L)

Def: Continuous

Let f:DRnRm:
f is continuous at x0 if limxx0f(x)=f(x0)

Formally f is continuous if:

ϵ>0, δ>0 such that d(x,x0)<δd(f(x),f(x0)<ϵ

Alternatviely
f is continuous iff the pre-image of every open set is open.

Def: Lipshitz-Continuous

f:DRnRm is Lipschitz-continuous if for some fixed kR:

||f(x)f(y)||<k||xy||