9. MLR Hypothesis Testing

SLR Review

Recall our earlier F-tests for anova T tests with respect to correlation and our parameters
Where F=MSRMSE=(n2)r21r2

MLR

εn×1Nn(0n×1,σ2In×n)

Overall Test

yi=XiTβ+εi=β0+xi,1β1+xi,2β2++xi,pβp

H0:β1=β2==βp=0, Ha: at least one βi0
SST=SSR+SSE

R2SSRSSTF=MSRMSE=SSRpSSEn(p+1)=n(p+1)pSSRSSEor F=n(p+1)pSSRSSTSSESST=n(p+1)pR21R2

where df numerator = p, df denominator = n(p+1)

(remember SSR=SSYSSE)

RR = {F such that F>Fα,p,n(p+1)}

Addition of a Group of Variables

F=(SSE(R)SSE(C)(complete parametersreduced parameters))SSE(C)ncomplete parameters 

R = reduced , C = complete
Ha: At least one new parameter contributes information
RR = {F>Fα,CR,nC}