7. Correlation and Hypothesis Testing

Correlation Coefficient

Let X,Y be random variables with E(X)=μx and E(Y)=μy
otherwise X is a constant

cov(X,Y)=E[(Xμx)(Yμy)]cov(X,Y)=E[XY]E(X)E(Y)=E[XY]μxμyρ=cov(X,Y)σxσy

Y=β0+β1X+ε, εN(0,σ2)
E[Y]=β0+β1μx
Var(Y)=β12σx2+σ2 which is like SST=SSR+SSE

E[Y|X]=β0+β1X
Var[Y|X]=σ2

XN(E(x)=μx,Var(x)=σx2)

cov(Y,X)=E[(Yμy)(Xμx)]=E[(β0+β1X+εβ0+β1μx)(Xμx)]=E[(β1(Xμx)+ε)(Xμx)]=E[β1[Xμx]2+ε(Xμx)]=β1E[(xμx)2]+E[ε(Xμx)]=β1σx2+E[ε]E[Xμx]=β1σx2(1)ρ=cov(X,Y)σxσy=β1σx2σxσy=β1(σxσy)(2)ρ2=β12σx2σy2σy2=β12σx2+σ21=σy2σy2=β12σx2σy2+σ2σy2β12σx2σy2=ρ21ρ1{ρ2=1σ2=0, perfect linear relationshipρ=0β1=0ρ>0β1>0ρ<0β1<0

Estimator

ρ^2=(β^2[(xix¯)2n1])(yiy¯)2n1=(β^2[(xix¯)2])(yiy¯)2=SSRSST

note:

SSTSST=SSRSST+SSESST1=ρ^2+SSESST1SSESST=ρ^2

let r2=ρ^2

Hypothesis Testing

H0:β1=0 vs Ha:β1>0H0:ρ=0 vs Ha:ρ>0

Looking at formula (1)

From earlier:

original test statistics

F-Test Restated

F=β^12Sxx||Residual Vector||2n2=SSRSSEn2

(n2)[SSRSSTSSESST]=(n2)[r21r2]Fn2t=F=n2r1r2tn2

by previous results

p-val=p(tn2>t), RR = {tn2>tn2,α}