5. SLR Confidence & Prediction Intervals

Linear Function of Parameters

Model: yi=β0+β1(xix¯)+εi,εiN(0,σ2)
Target: Estimating E(yi) at xi

E(yi)=β0+β1(xix¯)

Estimator: E(y^i))=β^0+β^1(xix¯)

(or Target: θ=a0β0+a1β1, Estimator: θ^=a0β^0+a1β^1)

We know β^0 Normal and β^1 Normal

E[β^0]=E[y¯]=1nE[yi]=1nβ0+β1(xix¯)=nβ0n+β1n(xix¯)0=β0Var[β^0]=Var[1nyi]=1n2nσ2=σ2nE[β^1]=E[yi(xix¯)SXX]=(xix¯SXX)E[yi]=(xix¯SXX)(β0+β1xi)=β0SXX(xix¯)=0 by (1)+β1SXX(xix¯)xi=β1SXXxi2nx¯2(unbiased)=β1Var[β^1]=σ2[xix¯SXX]2=σ2SXX2(xix¯)2=σ2SXX

Distribution of θ^:

θ^ is a linear combination of Normals and therefore it is Normally distributed.

E[θ^]=a0E[β^0]+a1E[β^1]=a0β0+a1β1=θVar[θ^]=Var[a0β^0+a1β^1]=Cov(a0β^0+a1β^1,a0β^0+a1β^1)(1)=Var(a0β^0)+Var(a1β^1)+2a0a1Cov(β^0,β^1)wts=0=a02Var(β0^)+a12Var(β^1)=a02(σ2n)+a12(σ2Sxx)=σ2(a02n+a12Sxx)

Note: Cov(x,y)=E[(xμx)(yμy)], Cov(x,x)=Var(x)

Cov(β^0,β^1)=Cov(1nyi,(xix¯Sxx)=ciyi)1ny11ny21nync1y1c1ncov(y1,y1)=c1σ2nc1ncov(y2,y2)=0c1ncov(y1,yn)=0c2y2c2ncov(y2,y1)=0c2ncov(y2,y1)=c2σ2nc2ncov(y2,yn)=0cnyncnncov(yn,y1)=0cnncov(yn,y2)=0cnncov(yn,yn)=cnσ2nCov(β^0,β^1)=σ2nci=σ2Sxxn(xix¯)0=0θ^θσa02n+a12SxxN(0,1)

Also (n2)s2σ2χn22

θ^θsa02n+a12Sxxtn2

note: Centered Model
a0=1
a1=(xix¯)

Also note that if cov(x,y)=0 then we know that x,y are independent if they are normal (not always the case for other distributions.)

Confidence Interval

θ^±tα2,n2(sa02n+a12Sxx)P[θ^tα2,n2(sa02n+a12Sxx)θθ^+tα2,n2(sa02n+a12Sxx)]=1α

for β1,a0=0,a1=1
for β0,a0=1,a1=0

Prediction Interval

Model:

yi=β0+β1(xix¯)+εi

Initial Dataset:

(x1,y1),(x2,y2),,(xn,yn)

Estimators: β^0=y¯ β^1=SxySxx

Target: y=β0+β1(xx¯)+ε , εN(0,1)

Prediction: y^=β^0+β^1(xx¯)

y is random and independent of our original dataset. y Normal
E(y)=β0+β1(xx¯)
Var(y)=σ2

y^ is a linear combination of Normals
E[y^]=β0+β1(xx¯)
Var[y^]=σ2n+(xx¯)σ2Sxx

(yy^) Normal
E[yy^]=β0+β1(xx¯)β0β1(xx¯)=0
Var[yy^]=σ2[1+1n+(xx¯)2Sxx]

y=y^+(yy^)prediction error

yy^σ1+1n+(xx¯)2SxxN(0,1)yy^s[1+1n+(xx¯)2Sxx]χn22y^±tα2,n2(s1+1n+(xx¯)2Sxx)