4. Centred Model & Anova Derivations

Expectation & Variance of Estimators

Model: yi=β0+β1xi+εi

For Slope Parameter

We know:

β^1=SXYSXX

WTS:

β^1=ciyi

where ci=xix¯SXX in unbiased

Lemma:

(xix¯)(yiy¯)=(xix¯)yi(xix¯)y¯(1)note:(xix¯)=xinx¯=0=(xix¯)yi

since yinormalβ^1normal

E[β^1]=E[ciyi]=E[yi(xix¯)SXX](ci constant)=(xix¯SXX)E[yi]=(xix¯SXX)(β0+β1xi)=β0SXX(xix¯)=0 by (1)+β1SXX(xix¯)xi=β1SXXxi2nx¯2(unbiased)=β1Var[β^1]=Var[ciyi]=ci2Var[yi]=σ2[xix¯SXX]2=σ2SXX2(xix¯)2=σ2SXXβ^1=xix¯Sxxyi=ciyiN(β,σ2Sxx)

Thus,

β^1β1σSxxN(0,1)Sxx(β^1β1)2σ2χ12

General Testing Parameters

Assumptions

F=y,u22y,u32++y,un2n2F(1,n2)

by 16.5

and that s2=(yiy^i)2n2=SSEn2 is unbiased

Centred Model

traditionally yi=β0(1111)+β1xi+εitake w1=(1111),w2=(x1x¯x2x¯xnx¯)centred model yi=β0w1+β1w2+εi

note: β0w1 and β1w2+εi will be orthogonal

Estimates:

y^i=β^0+β^1xi=(y¯β^1x¯)+β^1xi=y¯+β^1(xix¯)=β^0+β^1(xix¯)=y^i

So they are equivalent models

Centered Model LSE

minβ0,β1yy^,yy^Qβ0=2(yinβ0β1(xix¯)0)=0=yinβ0=0β^0=y¯Qβ1=2((xix¯)yiβ0(xix¯)β1(xix¯)2)=0β^1=(xix¯)yi(xix¯)2

Anova Derivation

(y1y2yn)=β0(111)+β1(x1x¯x2x¯xnx¯)+(ε1ε2εn)(y1y2yn)=nβ0(1n1n1n)u1+Sxxβ1(x1x¯Sxxx2x¯Sxxxnx¯Sxx)u2+(ε1ε2εn)

to get an orthonormal basis {u1,u2,,un}

y=y,u1u1+y,u2u2+y,u3u3+y,ununResidualalso ||y||2=iny,ui2,since orthonormaly,u2=Sxxβ^11Sxx(xix¯)yi=Sxxβ^1β^1=(xix¯)yiSxxβ^1=1Sxx((xix¯)yi)Sxx=1Sxxy,u2β^12Sxx=y,u22=SSRy=y¯(111)+β^1(x1x¯xnx¯)+εi(y1y¯y2y¯yny¯)=β^1(x1x¯xn)+εiyy¯,yy¯=β1(xx¯)+ε,β1(xx¯)+ε=β1(xx¯),β1(xx¯)+2β1(xx¯),ε0,orthogonal+ε,ε||yy¯||2=β^12||xx¯||2+||Residual Vector||2y=y,u1u1++y,unun||yy^||2=y,u32++y,un2=y(un)2

SST = SSR + SSE SST=(yiy¯)2=(n1)Sample Variance of y

SXX=||xx¯||2=(n1)Sample var. of xSSE=SSTSSR=SYYβ^12Sxx=||Residual vector||2

F-Test Restated

F=β^12Sxx||Residual Vector||2n2=SSRSSEn2

Anova

SourcedfSSMSFRegression1SSR=β^12SxxMSR=SSR1MSRMSEErrorn2SSE=SSTSSRMSE=SSEn2Totaln1Syy=SST

P value of rejection region P[F(1,n2)>F]

Example

The following data show the brand, price ($), and the overall score for six
stereo headphones that were tested by Consumer Reports. The overall
score is based on sound quality and effectiveness of ambient noise
reduction. Scores range from 0 (lowest) to 100 (highest).

BrandBoseSkullcandyKossPhillipsDenonJVCPrice (x)18015095707035Score (y)767161564026

Need to find x¯,y¯,Sxx,Sxy,Syy,xiyi

x¯=100,y¯=55,Sxx=14,950,Syy=1800,Sxy=4755β^1=SxySxx=0.3180SSR=β^12Sxx=1512.376SST=Syy=1800SSE=SSTSSR=287.264F=SSRSSE4=21.0327

P-value = P[F(1,4)>F=21.0327]
0.01<p-value<0.025

Rejection region RR={F such that F>F0.05(1,4)=7.71}
and FRR reject H0 at the 5% significant level.

Hypothesis Testing Summary

Let

(16.4,5)Wn2=1σ23ny,ui2=1σ2||yy^||2χn221σ2E[[yiy^]2]=n2E[[yiy^]2n2]=σ2

Therefore SSEn2 is unbiased for σ2

(1)Wn2=n2σ2SSEn2=n2σ2s2

by the var and expectation of Beta1

Sxx(β^1β1)σN(0,1)Sxx(β^1β1)σ(n2)s2(n2)σ2=Sxx(β^1β1)stn2

note (tdf)2Fdf

t=β^1ssxx

Types of Tests

For two-sided alternatives H0:β1=0,Ha:β10

F=β^12SxxSSEn2=t2

For H0:β1=β10,Ha:β1β10,β1>β10,β1<β10

t=Sxx(β^1β10)s