3 Non-central Chi-Squared Theorems

Non-Central Chi-squared 16.2

If yN(μ,I) , then q=yTy has a non-central chi-squared distribution
with N degrees of freedom and non-centrality parameter, θ=μTμ2

The central case will be denoted by χ2(N,θ=0) or, simply, χ2(N).

Quadratic Form Distribution Theorem 16.4

If yN(μ,V) and q=yTAy

qχ2(r,θ) where r=rank(A) and θ=μTAμ2 AV is idempotent

or (AV)2=AV

Independence Condition for Quadratic Forms 16.5

yN(μ,V)
q1=yTA1y
q2=yTA2y

q1 and q2 are independent iff A1VA2=0


Simple Regression Example

For yi=β0+εi
WTS σ^2=s2=(yiy^i)2n1 is unbiased for σ2

and (n1)s2σ2χn12

F=Sxxβ1^2σ2(n2)s2(n2)σ2=Sxxβ1^2s2F(1,n2)

We have:

y=[y1,y2,,yn],|u|=nu1=[1,1,,1]1||u1||=[1,1,,1]1n(y¯y¯y¯)=y,uuy¯=y,u1n=y11++yn1n

Least Squares Estimator

miny(β0β0β0),y(β0β0β0)=min(yiβ0)22[yiβ0]=want0β0=y¯y=y¯(111)(1)+(yy¯(111))(2)=β^0,MLE(111)+ε=||u||β^0,MLEu+ε

note (1) and (2) are orthogonal

If we have orthonormal basis in R3,{u1,u2,u3}

u1=13[111],u2=16[211],u3=13[011]y=i=13y,uiuiwi=y,uiw1=y1+y2+y23N(3β0,σ2)w2=2y1+y2+y36N(0,σ2)w3=y2+y32N(0,σ2)

Hypothesis
H0:β0=0
if true then:

w1,w2,w3N(0,σ2)y,uiσN(0,1)y,ui2σ2χ12y,u12(y,u22+y,u32)/2F1,2

numerator and denominator need to be independent

y=[y1σy2σy3σ],μ=E[y]=[000],cov.=(100010001)

cov(yi,yj)=0,ij since they are independent

yN(μ,cov)

Applying 16.4:

goal: re-express [y1+y2+y33σ]2 as yTAy and

(y[131313])(y[131313])TyT[131313][13,13,13]y(1)yTM3×3y=q1M3×3=[131313131313131313]=AN

rank = 1

(2)θ=μTM3×3μ2=0

WTS ANV is idempotent:

(ANV)(ANV)=(ANI3×3)(ANI3×3)=A2=[131313131313131313][131313131313131313]=[131313131313131313]

q1=[y1+y2+y33σ]2χ2(0,1)


Applying 16.5

=(y[261616])(y[261616])T+(y[01212])(y[01212])T=(y[261616])([26,16,16]yT)+(y[01212])[0,12,12]yT=y[462626261616261616]yT+y[0000121201212]yT=y([462626261616261616]+[0000121201212])yT(3)=y([462626264626262646]AD)yT=q2

Now need to show

(ADV)(ADV)=ADV

which is true

Then WTS ANVAD=0

ANI3×3AD=0

which is true. Thus q1 and q2 are independent by 16.5