7. Bayesian Simple Linear Regression

see simple linear regression

Problem

Given a sample of (x1,y1),,(xn,yn)
Give the bast line for the dataset
Y is the Response variable
X is the Predictor variable

Model: yi=α+β(xix¯)+εi where εiiidN(0,σ2)
Parameters: α,β, and σ2
Assumption: σ2 is known

Goal

minα,βi=1n[yiαβ(xix¯)]2

We get least squares estimator α^=y¯ and β^=(xix¯)yi(xix¯)2
see Centred Model LSE

Likelihood

p({εi}|α,β,σ2)=(12πσ2)ne12σ2(yiαβ(xix¯))2=p({yi}|α,β,σ2)(yiαβ(xix¯))2=[(yiy¯)(y¯α)β(xix¯))2]=[(yiy¯)2+2(yiy¯)[(y¯α)β(xix¯)+[(y¯α)β(xix¯)]2=(yiy¯)2+2(y¯α)(yiy¯)02β(xix¯)(yiy¯)+[(y¯α)22β(xix¯)(yiy¯)+β2(xix¯)2]=Syy2βSxy+n(y¯α)22β(y¯α)(xix¯)0+β2(xix¯)2=Syy2βSxy+n(y¯α)2+β2(xix¯)2p({yi}|α,β,σ2)=(12πσ2)n×e12σ2Syy×e12σ2[β2Sxx2βSxy]×e12σ2(n(y¯α)2)p({yi}|α,β,σ2)e12σ2[β2Sxx2βSxy]×e12σ2(n(y¯α)2)exp{Sxx2σ2[β22βSxySxx+[SxySxx]2[SxySxx]2]}×exp{12σ2n((y¯α)2)}exp{12σ2Sxx[β22βSxySxx+[SxySxx]2[SxySxx]2]}×exp{12σ2n((y¯α)2)}exp{12σ2Sxx[βSxySxx]2}×exp{12σ2Sxx[SxySxx]2}×exp{12σ2n((y¯α)2)}p({yi}|α,β,σ2)N(y¯,σ2n)×N(SxySxx,σ2Sxx)α^=y¯,var(α^)=σ2nβ^1=SxySxx,var(β^1)=σ2Sxx

Posterior

Want P(α,β|{yi}) given P(α,β)=P(α)P(β)P(α)N(mα=y¯,sα2=σ2n)P(β)N(mβ=SxySxx,sβ2=σ2Sxx)P(α,β|{yi})p({yi}|α,β)p(α,β)p({yi}|β)p({yi}|α)p(α)p(β)p({yi}|α)p(α)posterior αp({yi}|β)p(β)posterior βFor α:1sα2=1sα2+nσ2mα=[(1sα2)1sα2]mα+[nσ21sα2]y¯For β:1sβ2=1sβ2+nσ2mα=[1sβ21sβ2]mβ+[Sxxσ21sβ2]SxySxx

by normal updating rules