10. Jeffreys' Prior

Jeffreys' Prior

Jeffreys (1961) suggested a default rule for generating a prior distribution of a parameter, θ in a sampling model p(Y|θ). Jeffreys’ prior is given by

pJI(θ)where I(θ)=E[2logp(Y|θ)θ2]

is the Fisher information.

Example

YN(μ,σ2), Jefferys' prior distribution pJ(θ):

p({y}|θ)=(12π)n/2(σ2)n/2exp{(yμ)212σ2}l=n2ln(1)n2ln(2π)n2ln(σ2)1σ2(yμ)22lσ2=n2(σ2)1+(yμ)22(σ2)22l(σ2)2=n2[1σ4](yμ)2(1σ6)=n2[1σ4][((yμ)σ)2chi squared]1σ4E[2l(σ2)2]=n2[1σ2]1σ4n=n2[1σ2]E[2l(σ2)2]=n2[1σ4]=I(σ2)pJ(σ2)1σ4=1σ2