1.6 Types of Second-Order Equations

Consider the general PDE:

a11uxx+2a12uxy+a22uyy+a1ux+a2uy+a0u=0

Transformation Theorems

After some linear transformation of variables

x=b1x+b2y and y=b3x+b4y

i) Elliptic Case:

If a122<a11a22 then it is reducible to

uxx+uyy+=0

ii) Hyperbolic Case:

If a122>a11a22 then it is reducible to

uxxuyy+=0

iii) Parabolic case:

If a122=a11a22 then it is reducible to

uxx+=0

(unless a11=a12=a22=0)

Example

uxx5uxy=0

a11=1,a12=52,a22=0

(52)2>a11a22

Hyperbolic

xxu5xyu=0u((x)25(xy)+(52y)2(52y)2)=0u((x(52)(yy))(52y)2)=0u(x(52)(yy))u(52y)2=0(1)want{x=x52yy=52y{x=x+yy=25y

x=b1x+b2y,y=b3x+b4y whose inverse (x,y)=(x(x,y),y(x,y))

x=(x/x)x+(y/x)y=x52yy=(x/y)x+(y/y)y=52y.

So looking at (1):

xx=1, yx=52;xy=0, yy=52


Integrating we get:
x=x,y=52(yx)

x=x,y=x+25y

b1=1,b2=0,b3=1,b4=25


ux=xu=(x52y)u=ux52uy

uy=yu=52yu=52uy

uxx=x(ux)=(x52y)(ux52uy)uxx=uxx5uxy+254uyy.uyy=y(uy)=yuy=y(52uy)=52yuyuyy=5252uyy=254uyy.uxxuyy=[uxx5uxy+254uyy]254uyyuxxuyy=uxx5uxy=0