Isometry

Def Isometry

Suppose that V and W are inner product spaces. An isometry is a linear map T:VW such that v1,v2V:

T(v1),T(v2)W=v1,v2V

If |||| is the induced norm, then an isometry satisfies:

||T(v)||W2=T(v),T(v)W=v,v=||v||2

so ||T(v)||=||v||

Thm: Isometry then Isomorphism

If V is a finite inner product space and T:VV is an isometry

T is injective: vV s.t T(v)=0
T(v),T(v)=0=0,0=v,vv=0
by rank nullity it is also surjective

Isometry equivalencies

T:VV is an isometry where V is finite dimensional

  1. T is an isometry
  2. orthonormal basis B of V such that T(B) is also an orthonormal basis
  3. and orthonormal basis B of V such that T(B) is also an orthonormal basis
  4. vV ||T(v)||=||v||

12
B={b1,,bn}
T(bi),T(bj)=bi,bj=0 if i=j,1 otherwise

23 immediately follows
34

T(v),T(v)=i=1nT(cibi),j=1nT(cjbj)=i=1ni=jncicjbibj=i=1nci2=||T(v)||2v,v=i=1ncibi,i=jncjbj=j=1ni=1ncjcibjbi=i=1nci2=||v||2

41

\begin{align} &\lvert \lvert T(v)+T(w) \rvert \rvert=\lvert \lvert T(v+w) \rvert \rvert=\lvert \lvert v+w \rvert \rvert \text{ by assumption} \\ \\ \langle T(v)+T(w),T(v)+T(w) \rangle &=\langle T(v),T(v)+T(w) \rangle +\langle T(w),T(v)+T(w) \rangle \\ &=\langle T(v),T(v) \rangle +\langle T(v),T(w) \rangle +\langle T(w),T(v) \rangle+\langle T(w),T(w) \rangle \\ &=\lvert \lvert T(v) \rvert \rvert { #2} +2\langle T(w),T(v) \rangle +\lvert \lvert T(w) \rvert \rvert { #2} \\ &=\lvert \lvert v \rvert \rvert { #2} +2\langle T(v),T(w) \rangle +\lvert \lvert w \rvert \rvert { #2} \\ \\ &=\langle v+w,v+w \rangle =\lvert \lvert v \rvert \rvert { #2} +2\langle v,w \rangle +\lvert \lvert w \rvert \rvert { #2} \\ &\implies \langle T(v),T(w) \rangle =\langle v,w \rangle \end{align}

Isometries and Coordinate maps

If (V,,) is finite and T:VV is linear the following are equivalent:

  1. T is an isometry
  2. orthonormal basis B, [T]B is orthogonal
  3. an orthonormal basis B such that [T]B is orthogonal

12
since B is orthonormal then CB is an isometry, we have

[T(bi)]B[T(bj)]B=CB(T(bi)),CB(T(bj))=T(bi),T(bj)=bi,bj

23 trivial
31

CB(T(bi),CB(T(bj))=0 or 1T(bi),T(bj)=0 or 1

so orthonormal

If B is orthonormal then the fact that CB is an isometry comes from:

w,vV=i=1ncibi,j=1ncjbj=i=1ncibi,i=jncjbj=i=1ncicj=CB(w),CB(v)Euc