3. Series

let (bn) be a sequence. An infinite series is:

n=1bn

where sm=n=1mbn is partial sum.

Convergence of a Series

A series converges if its partial sums converge

Example 1:

n=11n2sm=1+122+133+144++1m2<1+121+132+143++1m(m1)=1+(112)+(1213)+(1314)++(1(m1)1m)=1+11m<2.

By monotone convergence theorem the sequence (sm) is bounded and strictly increasing so it converges.

Example 2:

n=11ns2k=1+12+(13+14)+(15++18)++(12k1+1++12k)>1+12+(14+14)+(18++18)++(12k++12k)=1+12+2(14)+4(18)++2k1(12k)=1+12+12+12++12=1+k(12),

So (s2k) is unbounded so it does not converge.

Example (Geometric)

Let xn=rn rR

n=0rn=1+r+r3+

If r=1 then limSn=lim(n times1+1+1++1)
Which diverges
If r0

SnrSn=(1+r+r2+r3+)(r+r2+r3+)(1r)(1+r+r2+rn)=1rn+1Sn=1rn+11r

If |r|<1limrn=0
If |r|>1limrn diverges

limSn=lim1rn+11r=11r

Using the algebraic limit theorems of sequences we get

k=0ark=a1r

iff |r|<1

Thm Cauchy Criterion

xn converges if and only if for every ε>0 there exists a KN so that if n>mK then

|am+1+am+2++an|<ε

Thm Algebraic Limit Series

If k=1ak=A and k=1bk=B
Then:
i) k=1cak=cA for all cR and
ii) k=1(ak+bk)=A+B

Thm Sequence limit is Zero

If ak converges then (ak)0

Thm Comparison Tests

Assume (ak) and (bk) are sequences satisfying 0akbk for all kN
i) If bk converges then ak converges
ii) If ak diverges then bk converges

Thm Absolute Convergence

If n=1|an| converges then n=1an converges

Conditionally Converge

an converges but |an| does not

Theorem 2.7.10. If a series converges absolutely, then any rearrangement of this series converges to the same limit

Thm 2.4.6 Cauchy Condensation Test

Suppose (bn) is decreasing and bn0 for all nN then n=1bn converges if and only if

n=02nb2n=b1+2b2+4b4+8b8+16b16+

converges.

Proof

If n=12nb2n converges then the partial sums are bounded by M>0.

Since bn0 we know its partial sums sm are increasing. Just need to show that its bounded.

m2k+11. Then sms2k+11

s2k+11=b1+(b2+b3)+(b4+b5+b6+b7)++(b2k++b2k+11)b1+(b2+b2)+(b4+b4+b4+b4)++(b2k++b2k)=b1+2b2+4b4++2kb2k=tk

smtkM

Alternating Series Test

Let (an) be a sequence satisfying
(i) a1a2anan+1
(ii) (an)0.
Then, the alternating series n=1(1)n+1an converges.

Series Ratio Test

Given a series n=1an with an0

Ratio test:
if

lim|an+1an|=r<1

then the series converges absolutely